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Abstract
Pulsed photo-thermal radiometry (PPTR) is a non-invasive, non-contact
diagnostic technique used to locate cutaneous chromophores such as melanin
(epidermis) and hemoglobin (vascular structures). Clinical utility of PPTR
is limited because it typically requires trained user intervention to regularize
the inversion solution. Herein, the feasibility of automated regularization
was studied. A second objective of this study was to depart from modeling
port wine stain PWS, a vascular skin lesion frequently studied with PPTR, as
strictly layered structures since this may influence conclusions regarding PPTR
reconstruction quality. Average blood vessel depths, diameters and densities
derived from histology of 30 PWS patients were used to generate 15 randomized
lesion geometries for which we simulated PPTR signals. Reconstruction
accuracy for subjective regularization was compared with that for automated
regularization methods. The objective regularization approach performed
better. However, the average difference was much smaller than the variation
between the 15 simulated profiles. Reconstruction quality depended more
on the actual profile to be reconstructed than on the reconstruction algorithm
or regularization method. Similar, or better, accuracy reconstructions can be
achieved with an automated regularization procedure which enhances prospects
for user friendly implementation of PPTR to optimize laser therapy on an
individual patient basis.

Introduction

Most port wine stains (PWS), congenital vascular malformations of human skin, are still
resistant, or respond poorly to laser therapy while a sub-group of lesions responds quite
satisfactorily. It is believed that the vast heterogeneity in PWS lesion characteristics such
as depth and diameter of ecstatic vessels are the underlying cause for the highly variable
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and unpredictable response to laser therapy. A suitable diagnostic technique may enable
physicians to make a knowledge-based choice regarding laser wavelength, pulse duration and
radiant exposure in an effort to optimize therapy on an individual patient basis.

Pulsed photo-thermal radiometry (PPTR) is a non-contact technique in which skin is
irradiated with laser light of sub-therapeutic radiant exposure and the temporal evolution of
the surface radiometric temperature is measured with an infrared detector (Tam and Sullivan
1983, Imhof et al 1984). The laser light is selectively absorbed in subsurface chromophores
such as epidermal melanin and hemoglobin in vascular structures causing a spatial distribution
of temperature increases which are similar to those which occur during an actual therapeutic
pulse. This spatial temperature distribution can then be determined by applying an inversion
algorithm to the measured temporal evolution of the surface radiometric temperature.

PPTR has been considered a promising technique for PWS characterization because its
contrast mechanism (optical absorption) is directly linked to the laser treatment mechanism:
selective photo-thermolysis (Anderson and Parrish 1981, 1983). For example, the wavelength
and pulse duration used for PPTR diagnostics are usually the same as those used for PWS
laser therapy. PPTR, similar to photo-acoustic methods (Viator et al 2003, 2004), may thus
have an important advantage over other candidate diagnostic methods which mostly rely on
optical scattering (optical coherence tomography and reflectance spectrometry) and are thus
only indirectly related to the therapeutic pulse.

Unfortunately, determination of the spatial temperature distribution from the measured
radiometric signals is difficult. In mathematical terms, it is often described as a ‘severely
ill-posed inverse problem’ which explains why a large number of inversion methods have
been investigated (Jacques et al 1993, Milner et al 1995, 1996, Xiao and Imhof 1999, Xiao
et al 2001, Cui et al 2003, Li et al 2004a, Verkruysse et al 2005). In simpler terms, the
‘ill-posedness’ means that an inversion algorithm produces several different spatial profiles as
solutions to the measured temporal profiles. ‘Regularization’, a term describing the process
of making an informed choice from the different spatial profiles is considered to be of critical
importance in PPTR (Milner et al 1995, Li et al 2004a, Li et al 2004b, Verkruysse et al
2005). Many existing regularization techniques require some degree of skill by the user and
are inherently subjective. For successful clinical implementation of PPTR, user intervention
is undesirable. The first objective of this study is, therefore, to investigate if an objective, and
thus automatable, regularization method can be used without compromising reconstruction
accuracy.

As with any diagnostic method, it is important to have a realistic impression of the general
accuracy of the diagnostic information. PPTR has been typically evaluated on a few rather
simplified ‘layered’ PWS geometries (Milner et al 1995, Sathyam and Prahl 1997, Smithies
et al 1998, Xiao and Imhof 1999, Xiao et al 2001, Majaron et al 2002, Cui et al 2003,
Verkruysse et al 2005) on the basis of which it is not possible to determine PPTR’s ability
to produce useful diagnostic information. Therefore, a second objective of this study is to
rigorously and systematically test PPTR on a large number of realistic PWS geometries to
allow different inversion and regularization methods to be objectively compared.

Methods

Simulation of PWS geometries and corresponding infra-red temporal signals

As a basis for ‘realistic’ PWS geometries, we chose to use data published by Fiskerstrand
et al (1996) in which histological data of 32 PWS patients were stratified by response to laser
treatment. The resulting data for each response group were presented as distributions of vessel
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Figure 1. (A) Simulated PWS geometry based on statistical characteristics for ‘poor responders’.
(B) Temperature depth profile T for the geometry in (A) is indicated by the thick solid curve (‘p1’).
Four additional profiles for ‘poor responders’ are included. (C) Temporal radiometric signals S for
the temperature depth profiles in (B). (D), (E), (F) and (G), (H), (I) are similar to (A), (B) and (C)
but were simulated for ‘good’ and ‘moderate responders’ respectively.

diameter and depth. Under the assumption that no correlation exists between vessel depth,
diameter and dermal blood volume fraction, this information allows us to simulate ‘realistic’
PWS vessel distributions. A simplification in our approach is that we assumed all vessels to
be horizontally positioned and parallel to each other. Using the vessel diameter and depth
distributions published by Fiskerstrand et al (1996) as a basis, we randomly resampled five
geometries for each of the following response groups to laser treatment. Three resampled
geometries are illustrated in figures 1(A), (D) and (G) for ‘poor’, ‘moderate’ and ‘good’
responders, respectively. The vessel positions were allowed to be positioned within a rectangle
representing a lateral dimension of 0.3 mm and a depth dimension of 1 mm. The ‘poor’
responder geometries are characterized by a relatively large number of smaller vessels while
the ‘good’ responders have vessels located at relatively shallow depths.

Subsequently, we used these vessel geometries as input to a Monte Carlo algorithm to
compute energy deposition distributions, simulating a PPTR laser pulse. The skin depth in
these simulations was 2 mm while the epidermal thickness and absorption coefficient were
fixed at 60 µm and 16.2 cm−1, respectively. Other skin optical properties used were the same
as used in a previous study on light distributions using Monte Carlo for a laser wavelength
of 585 nm (Verkruysse et al 1993). The Monte Carlo algorithm was adapted such that light
exiting the 0.3 mm by 2 mm rectangle laterally re-enters the rectangle at the laterally opposite
side, thus simulating a lateral repetition of the pattern in a semi-infinite layered geometry
(Verkruysse et al 1999).
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Table 1. Reconstruction algorithms evaluated in this study.

Reconstruction algorithm Type

Conjugate gradient minimization (CG) Iterative
Singular value decomposition (SVDi) Iterative
Singular value decomposition (SVDa) Analytic

Table 2. Regularization approaches evaluated in this study.

Regularization approach Type

L-curve Subjective, not automatable
RTnorm 0 Objective, automatable
RTnorm 1 Objective, automatable

Herein, only one-dimensional PPTR was considered so the energy distribution was
laterally averaged, obtaining a temperature increase (relative to the initial body temperature)
versus skin depth profile, referred herein as �T (z, t = 0) or simply T. To account for the
duration of the laser pulse, we allowed the T profiles to relax by modeling heat diffusion
(using finite differences) for a period of 1.5 ms (a pulse duration often used in our PPTR
measurements). The 15 generated temperature profiles are shown in figures 1(B), (E) and (H).
For each T profile, the associated radiometric signal �S(t) or simply S was computed (shown
in figures 1(C), (F) and (I)) using a well-described model (Milner et al 1995, Verkruysse
et al 2005), described briefly in the following section. Finally, we created for each profile
two additional signals by adding noise with corresponding signal-to-noise ratios (SNR) of 100
and 1000. The final result was a set of 45 simulated S(t) signals: 5 per each laser treatment
response group and each at 3 SNR values of 100, 1000 and infinity.

Reconstruction algorithms and regularization methods

As described above, a relatively large number of reconstruction (inversion) algorithms as well
as regularization methods have been previously proposed and used in the past. We chose to
evaluate three different reconstruction algorithms (table 1). With each algorithm, we applied
three different regularization approaches (table 2).

In order to clarify the algorithms used in this study, a brief review of the fundamental
equations involved is warranted and given below. The measured signal �S(t) can be expressed
in terms of the temperature distribution �T (z, t = 0) and a kernel function K (z, t)

(equation (1)). A detailed description of K (z, t) is given in multiple references (e.g. Verkruysse
et al (2005)) and will therefore not be repeated here:

�S(t) =
∫ ∞

z=0
�T (z, t = 0)K(z, t) dz. (1)

Equation (1) can conveniently be written as a simple matrix multiplication where �S(t),
K(z, t) and �T (z, t = 0) are discretized as S, K and T, respectively:

S = K · T. (2)

Since T is the vector that displays the chromophore distribution, we wish to obtain this vector
from S through an inversion algorithm. A brief description of the three algorithms used in this
study is as follows.
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Conjugate gradient (CG) minimization. This iterative method (Milner et al 1995) refers to a
minimization algorithm and is used in our application to minimize the norm of the residue R
(equation (3)),

R = ‖Smeas − KT‖ , (3)

where Smeas is the measured signal and the double bars indicate the Euclidean norm.
Hereafter, we refer to CG as the minimization algorithm that finds T by minimizing R.

Regularization with this method is done by limiting the number of iteration steps.

SVD methods. Since the inverse problem is severely ill-posed, a simple inversion T = K−1S
results in highly variable results. However, in such cases, the pseudo-inverse of K using
singular value decomposition (SVD) of K (equation (2)) is often used to express T in a
straightforward way (Verkruysse et al 2005) (equations (4) and (5)):

K =
m∑

i=1

σiuivT
i (4)

T(p) =
p∑

i=1

uT
i Svi . (5)

In this approach, regularization is easily implemented by limiting the number of p (i.e., the
number of singular vectors u and v used in the composition of T(p)). The desired vector
describing the temperature immediately after laser exposure as a function of skin depth can
thus easily be expressed in an analytical fashion.

Both CG and SVD methods often produce temperature profiles with negative values,
which would correspond to temperature reductions as a result of laser exposure. Since this
is clearly not realistic, the solutions are typically non-negatively (NN) constrained which
has been demonstrated previously with CG (Milner et al 1995). We recently demonstrated
(Verkruysse et al 2005) that a combination of SVD techniques with CG iteration can also
implement a NN constraint. The latter method has been described in detail (Verkruysse et al
2005) and will be referred to herein as SVDi.

In this study, we introduce an alternative method that also uses SVD techniques but is
analytical, i.e. non-iterative. This method will be referred to as SVDa and implements the NN
constraint in a very simple way by setting the negative values in T(p) to 0. Regularization in
SVDi as well as SVDa is done by limiting the number p, and often referred to as ‘Truncated
SVD’.

Regularization methods

Regularization is necessary for both iterative reconstruction algorithms such as CG and SVD.
Over-iteration in CG and inclusion of too many singular vectors in SVDi or SVDa (too large
a number for p) typically lead to unphysical oscillations in T (Milner et al 1995). Large
oscillations cause the Euclidean norm of T (referred to herein as Tnorm) to be very large, so
Tnorm can be used as a monitoring parameter in the regularization.

A popular regularization method known as the L-curve (Lawson and Hanson 1974)
plots Tnorm versus R (equation (3)). As the inversion procedure progresses (by iteration or
incrementing the value of p), R decreases while Tnorm increases. The resulting shape often
resembles the letter ‘L’. The solution T associated with the ‘knee’ (the corner of the ‘L’) of the
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L-curve is supposedly optimal. Typically, the location of the ‘knee’ is subjectively assessed
by an operator.

Unfortunately, the ‘knee’ is often not very sharp and, therefore, subjective bias introduced
by different operators often leads to different ‘solutions’. In an attempt to make regularization
objective, we introduce an alternative regularization method which is also based on the
quantities R and Tnorm. and we refer to this regularization method as RTnorm. In this approach,
the product of R and Tnorm is plotted versus the number of iterations for iterative reconstruction
algorithms (Johnston and Gulrajani 2000) or the p value for SVD-based algorithms. When
the product RTnorm is at a minimum we define this point as the end point for iteration and refer
to this point as RTnorm0 or simply RT0. An alternative end point with this method and which
was evaluated herein is defined by the iteration point at which RTnorm is 1% higher than the
value at the minimum. This endpoint is referred to as RTnorm1 or simply RT1. For the SVD
methods, RT0 and RT1 are defined as the results for p at which RTnorm is at its minimum and
p+1, respectively.

For the L-curve regularization, which is the only subjective regularization method in our
study, the 45 simulated signals (15 profiles × 3 SNR levels) were offered to four trained
individuals for reconstruction with each of the three reconstruction algorithms. Thus, a total
of 540 (4 × 3 × 45) subjectively regularized profiles were produced. The total number of
objectively regularized profiles was 270 (2 × 3 × 45), for 2 (RT0 and RT1) regularization
methods and three reconstruction algorithms.

Quantification of reconstruction results

In order to compare objectively reconstructed profiles T with their corresponding original
profiles Torig, we define a parameter Q (equation (6)) as a measure of the reconstruction
quality. Q is calculated as the average discrepancy between the original and reconstructed
temperature increases. A Q value of 0 indicates a perfect reconstruction while larger Q-values
indicate poor reconstructions.

Depending on the epidermal melanin concentration, the physician treating PWS may
sometimes be more interested in an accurate prediction of the epidermal temperature rise
during treatment, than PWS depth. Moreover, it is also expected that the temperature profiling
accuracy decreases with depth (Smithies et al 1998). To account for this, we used exponential
weighting functions w (equations (6) and (7)) with two different k values for the attenuation
with depth: 0.05 and 0.4 mm for the epidermal temperatures and PWS reconstructions,
respectively. The two different Q values for the two k values will be referred to as Qepi and
QPWS for ‘epidermal’ weighting and ‘PWS’ weighting respectively.

Q =
∥∥∥∥ (T − Torig)

2w

‖w‖
∥∥∥∥ (6)

w = exp(−z/k). (7)

A graphic example of the calculation of Q is shown in figure 2 using arbitrary examples of
original and reconstructed temperature depth profiles.

Results

From a total of 810 reconstructed profiles, we selected a small number that illustrates the impact
of several of the study parameters on reconstruction quality. An example of how subjective
regularization using the L-curve can lead to different reconstruction profiles is shown in
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Figure 2. (A) Original temperature depth and an associated reconstructed temperature profile.
(B) To quantify the discrepancy between original and reconstruction, the norm of the absolute
difference is computed, weighted by a weighting curve being either wepi or wpws, emphasizing
accuracy of the superficial chromophores and deeper chromophores, respectively (equation (6)).
The resulting quality value Q is large and small for a poor and good reconstruction, respectively.
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Figure 3. (A) Original profile, simulated with ‘good responder’ characteristics, along with two
reconstructions obtained with the CG inversion method and L-curve as regularization. The two
reconstructed profiles are for two different operators who subjectively determined the ‘knee’ in the
L-curve. (B) The same original profile as in (A), along with two reconstructed profiles obtained
with SVDa and regularization methods RT0 and RT1. RT1 resulted in a better match with the
original.

figure 3(A). Two operators (a and b) determined the ‘knee’ to be at two different positions,
leading to considerably different reconstruction profiles. Differences were also noted in
reconstructed profiles when two different objective regularization methods (RT0 and RT1) are
used as shown in figure 3(B). In this example, the inversion algorithm used is SVDa and the
values for p are 6 and 7 for RT0 and RT1, respectively.

It is important to note that the illustrated differences between operators (figure 3(A))
are not typical. In fact, we found that for most profiles, the expected differences caused by
subjectivity for the L-curve did not show up in a significant way, nor did we find an operator
induced bias when all 15 profiles were considered. The superior reconstruction profile for
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Figure 4. (A) Typical examples of reconstructed profiles in which temperature reconstruction
close to the surface is better than that in the deeper dermis. Differences between inversion methods
are marginal. (B) A second example in which two sharp peaks in the dermis are reconstructed as
one broad layer. Differences between CG and SVDa are small for SNR = 1000. When no noise is
simulated, SVDa can reconstruct the two peaks exceptionally well whereas for CG, the elimination
of noise barely improved the reconstruction (not shown).

RT1 with respect to RT0 with the SVDa algorithm was found to be significant on average
only (paired, two tailed t-test, p < 0.05). There are many profiles for which RT0 resulted in
better profiles than RT1. The overall comparisons of average reconstruction quality for the
combinations will be discussed in the next section.

The reconstruction profiles shown in figure 4(A) are typical in the sense that there are
no big differences in reconstruction quality for whichever combination of regularization
and inversion methods was used in the presence of some noise in the signal S. Local
chromophore concentrations at depths greater than approximately 0.1 mm could typically
not be reconstructed very well. Examples of such features are the peaks at a depth of 0.3 mm
in figure 4(A) and 0.2 and 0.35 mm in figure 4(B). However, depth determination of superficial
peaks was generally determined well while the overall amplitude and shape were often
reconstructed poorly.

These features could typically not be resolved even in the absence of noise with all
inversion algorithms with the exception of SVDa in which the reconstruction profiles for
infinite SNR matched the original profiles surprisingly well. An illustration of this is given by
the dashed line in figure 4(B) showing that two peaks at 0.2 and 0.35 mm are resolved almost
perfectly.

A surprising result is that the particular shape of a temperature profile affects the
reconstruction quality more than any combination of regularization or inversion methods,
and even the SNR level in the measured signal S. This is illustrated in figure 5 in which
Qepi values for all reconstructed profiles are plotted, categorized by SNR level (columns) and
inversion algorithm (rows). For the L-curve regularization, the results for all four operators
were averaged. The choice of the regularization method is virtually irrelevant for the CG and
SVDi methods. However, for SVDa, the objective regularization approaches RT0 and RT1 are
superior to the subjective L-curve method. Conclusions for QPWS (values not shown) are the
same as for Qepi.
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Figure 5. Reconstruction quality values Qepi obtained for all 15 profiles for CG ((A)–(C)), SVDa
((D)–(F)) and SVDi ((G)–(I)). The columns from left to right are for decreasing SNR levels as
indicated. In each figure, the Qepi values are shown for each of the three regularization methods
studied. In (A), (B), (D) and (G), the values for the different regularization methods are so similar
that the curves overlap partly or completely.

A final objective comparison between regularization and inversion methods can be made
by considering the average of all Q values for the 15 profiles. The results are shown in
figure 6 for quality metrics Qepi and QPWS (figures 6(A)–(C) and (C)–(F), respectively) and for
SNR = infinite, 1000 and 100. The observation that SVDa performs well for infinite SNR is
confirmed (figures 6(A) and (D)) while its advantage over CG and SVDi disappears for SNR
= 1000 (figures 6(B) and (E)) and SNR = 100 (figures 6(C) and (F)). While there are no
significant differences between the regularization methods for CG and SVDi, the L-curve and
RT0 methods perform significantly worse (paired, two tailed t-test, p < 0.05) than RT1 when
combined with SVDa.

Values for QPWS are significantly higher than for Qepi which reflect the fact that superficial
chromophore concentrations (e.g. epidermal melanin) are reconstructed better than deeper
chromophore concentrations (hemoglobin in blood vessels) (Smithies et al 1998).

Discussion

The first objective of this study was to evaluate if an objective regularization approach could
be used in PPTR without compromising reconstruction quality. Our results indicate that this
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Figure 6. Quality values Qepi ((A)–(C)) and QPWS ((C)–(E)) averaged over 15 profiles, categorized
per regularization/inversion method combination. (A)/(D), (B/(E) and (C)/(F) are for SNR =
infinite, 1000 and 100 respectively.

seems indeed possible. On average, reconstruction quality was even slightly better for the
objective regularization approach (paired, two tailed t-test, p < 0.05). The difference, however,
is hardly relevant since it is considerably smaller than the variation in reconstruction quality
caused by different PWS depth profiles.

The latter notion leads to the conclusion for our second aim which was to rigorously
study PPTR using multiple realistic profiles. Our finding that the critical determinant of
reconstruction quality is neither the regularization method nor the inversion algorithm but
the particular shape of the simulated depth profile itself is somewhat surprising us, to our
knowledge this has never been reported in the PPTR literature. In contrast, it was often tacitly
assumed that the choice of regularization and inversion algorithms was critical because a
certain choice will produce reconstructions of approximately equal quality, regardless of the
actual depth profile. The simulations in this study show that the actual depth profile is more
critical to the reconstruction accuracy than the inversion approach used.

It is important to note that the simulated ‘realistic’ profiles may represent only a small
fraction of actual PWS geometries which were all simulated at 5% dermal blood volume
fraction. Human PWS may have considerably lower as well as higher dermal blood volume
fractions. It is possible that conclusions derived from this study may not hold had variation
in this parameter been modeled. Similarly, if the lateral dimension of the rectangle in which
we resampled the PWS geometries had been larger than the 0.3 mm as used in this study, the
original profiles Torig would have shown fewer features which would likely have affected the Q
values. In typical PPTR measurements, the interrogated areas are typically larger. However,
we chose the relatively small lateral dimension because we wanted to test the reconstruction
methods with ‘feature rich’ profiles.
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Majaron et al (2002) demonstrated that 2 wavelength excitation PPTR can enhance
the accuracy of reconstructed temperatures by separating the epidermal signal from that of
underlying vascular structures. A study similar to the present one for 2 wavelength excitation
is important and being performed at our institute.

The definition of Q is somewhat arbitrary and does not necessarily reflect whether the depth
location of a chromophore ‘peak’ is reconstructed accurately. We tried briefly to incorporate
the depth accuracy of a chromophore peak in the reconstruction quality parameter to meet the
physician’s need to know PWS ‘depth’. However, this proved cumbersome because very often
the depth location of a peak shifts dramatically or a peak may even disappear with a small
difference in regularization. This is illustrated in figure 4(B) where the reconstruction profile
for CG is not appreciably different from that obtained with SVDa (SNR = 1000) while the
curve for CG would have defined only one peak at 0.35 mm depth and the SVDa curve would
have defined two peaks. However, despite its limitations, we believe that our definition of Q
is sufficient to support the general conclusions of this study.

The differentiation between Qepi and QPWS shows that PPTR provides significantly more
accurate predictions for the epidermal temperature increase in response to pulsed laser exposure
than for deeper skin layers. This suggests that the value of PPTR may be to provide
the physician with guidelines regarding the maximum safe radiant exposure (the epidermal
temperature increase is the main limitation in terms of maximizing radiant exposure) rather
than to inform about PWS ‘depth’ or even peak temperatures in a reconstructed vessel or
‘layer’ of vessels. In this context, it is important to keep in mind that one-dimensional
PPTR by definition provides an estimate for the average temperature increase at a certain
depth. The actual temperature in vascular structures is likely to be much higher while the
peri-vascular dermis experiences much lower temperature increases than indicated by the
PPTR reconstruction profile. In our institute we are currently indeed focusing our efforts to
relate PPTR-obtained information on the maximum safe laser radiant exposures as opposed
to predicting PWS ‘depth’ (Verkruysse et al 2007).

There are many other ways to approach the inverse problem of PPTR and this study does
not claim that the studied algorithms are optimal or even close to optimal. However, the finding
that reconstruction quality for all three algorithms, almost independent of the regularization
mechanism, depends strongly on the actual profile to be reconstructed suggests that in the
evaluation of solutions to the inverse problem of PPTR, it is important to model more realistic
profiles than simple discrete layers of chromophores as has been done typically.

Conclusions

The goal of this study was to test if PPTR depth profiling accuracy is compromised when
objective rather than subjective regularization methods are used. Objective regularization
methods performed equally well in this study, if not better than the more conventional
subjective L-curve method. Reconstruction quality of simulated one-dimensional depth
profiles of realistic PWS geometries depends on the actual shapes of the profiles rather than
the combination of regularization and inversion methods.
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